0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 IDP
↳14 IDPNonInfProof (⇐)
↳15 IDP
↳16 IDependencyGraphProof (⇔)
↳17 IDP
↳18 IDPNonInfProof (⇐)
↳19 AND
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
↳23 IDP
↳24 IDependencyGraphProof (⇔)
↳25 TRUE
↳26 IDP
↳27 IDependencyGraphProof (⇔)
↳28 IDP
↳29 IDPNonInfProof (⇐)
↳30 AND
↳31 IDP
↳32 IDependencyGraphProof (⇔)
↳33 TRUE
↳34 IDP
↳35 IDependencyGraphProof (⇔)
↳36 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i69[0] →* i69[1])∧(i60[0] →* i60[1])∧(i60[0] > 0 && i60[0] <= i69[0] →* TRUE))
(1) -> (2), if ((i69[1] →* i99[2])∧(i60[1] →* i60[2]))
(1) -> (4), if ((i60[1] →* i60[4])∧(i69[1] →* 0))
(2) -> (3), if ((i99[2] →* i99[3])∧(i99[2] > 0 →* TRUE)∧(i60[2] →* i60[3]))
(3) -> (2), if ((i60[3] →* i60[2])∧(i99[3] + -1 →* i99[2]))
(3) -> (4), if ((i60[3] →* i60[4])∧(i99[3] + -1 →* 0))
(4) -> (0), if ((i60[4] →* i60[0])∧(0 →* i69[0]))
(4) -> (6), if ((0 →* i69[6])∧(i60[4] →* i60[6]))
(5) -> (0), if ((i69[5] →* i69[0])∧(0 →* i60[0]))
(5) -> (6), if ((i69[5] →* i69[6])∧(0 →* i60[6]))
(6) -> (7), if ((i60[6] →* i60[7])∧(i69[6] →* i69[7])∧(i69[6] > 0 && i60[6] > i69[6] →* TRUE))
(7) -> (5), if ((i69[7] →* i69[5])∧(i60[7] →* 0))
(7) -> (8), if ((i60[7] →* i101[8])∧(i69[7] →* i69[8]))
(8) -> (9), if ((i101[8] > 0 →* TRUE)∧(i101[8] →* i101[9])∧(i69[8] →* i69[9]))
(9) -> (5), if ((i69[9] →* i69[5])∧(i101[9] + -1 →* 0))
(9) -> (8), if ((i101[9] + -1 →* i101[8])∧(i69[9] →* i69[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i69[0] →* i69[1])∧(i60[0] →* i60[1])∧(i60[0] > 0 && i60[0] <= i69[0] →* TRUE))
(1) -> (2), if ((i69[1] →* i99[2])∧(i60[1] →* i60[2]))
(1) -> (4), if ((i60[1] →* i60[4])∧(i69[1] →* 0))
(2) -> (3), if ((i99[2] →* i99[3])∧(i99[2] > 0 →* TRUE)∧(i60[2] →* i60[3]))
(3) -> (2), if ((i60[3] →* i60[2])∧(i99[3] + -1 →* i99[2]))
(3) -> (4), if ((i60[3] →* i60[4])∧(i99[3] + -1 →* 0))
(4) -> (0), if ((i60[4] →* i60[0])∧(0 →* i69[0]))
(4) -> (6), if ((0 →* i69[6])∧(i60[4] →* i60[6]))
(5) -> (0), if ((i69[5] →* i69[0])∧(0 →* i60[0]))
(5) -> (6), if ((i69[5] →* i69[6])∧(0 →* i60[6]))
(6) -> (7), if ((i60[6] →* i60[7])∧(i69[6] →* i69[7])∧(i69[6] > 0 && i60[6] > i69[6] →* TRUE))
(7) -> (5), if ((i69[7] →* i69[5])∧(i60[7] →* 0))
(7) -> (8), if ((i60[7] →* i101[8])∧(i69[7] →* i69[8]))
(8) -> (9), if ((i101[8] > 0 →* TRUE)∧(i101[8] →* i101[9])∧(i69[8] →* i69[9]))
(9) -> (5), if ((i69[9] →* i69[5])∧(i101[9] + -1 →* 0))
(9) -> (8), if ((i101[9] + -1 →* i101[8])∧(i69[9] →* i69[8]))
(1) (i69[0]=i69[1]∧i60[0]=i60[1]∧&&(>(i60[0], 0), <=(i60[0], i69[0]))=TRUE ⇒ LOAD425(i60[0], i69[0])≥NonInfC∧LOAD425(i60[0], i69[0])≥COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])∧(UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥))
(2) (>(i60[0], 0)=TRUE∧<=(i60[0], i69[0])=TRUE ⇒ LOAD425(i60[0], i69[0])≥NonInfC∧LOAD425(i60[0], i69[0])≥COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])∧(UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥))
(3) (i60[0] + [-1] ≥ 0∧i69[0] + [-1]i60[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(2)bni_31]i60[0] ≥ 0∧[(-1)bso_32] ≥ 0)
(4) (i60[0] + [-1] ≥ 0∧i69[0] + [-1]i60[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(2)bni_31]i60[0] ≥ 0∧[(-1)bso_32] ≥ 0)
(5) (i60[0] + [-1] ≥ 0∧i69[0] + [-1]i60[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(2)bni_31]i60[0] ≥ 0∧[(-1)bso_32] ≥ 0)
(6) (i60[0] ≥ 0∧i69[0] + [-1] + [-1]i60[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[bni_31 + (-1)Bound*bni_31] + [(2)bni_31]i60[0] ≥ 0∧[(-1)bso_32] ≥ 0)
(7) (i60[0] ≥ 0∧i69[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[bni_31 + (-1)Bound*bni_31] + [(2)bni_31]i60[0] ≥ 0∧[(-1)bso_32] ≥ 0)
(8) (i69[1]=i99[2]∧i60[1]=i60[2] ⇒ COND_LOAD425(TRUE, i60[1], i69[1])≥NonInfC∧COND_LOAD425(TRUE, i60[1], i69[1])≥LOAD702(i60[1], i69[1])∧(UIncreasing(LOAD702(i60[1], i69[1])), ≥))
(9) (COND_LOAD425(TRUE, i60[1], i69[1])≥NonInfC∧COND_LOAD425(TRUE, i60[1], i69[1])≥LOAD702(i60[1], i69[1])∧(UIncreasing(LOAD702(i60[1], i69[1])), ≥))
(10) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_34] ≥ 0)
(11) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_34] ≥ 0)
(12) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_34] ≥ 0)
(13) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(14) (i60[1]=i60[4]∧i69[1]=0 ⇒ COND_LOAD425(TRUE, i60[1], i69[1])≥NonInfC∧COND_LOAD425(TRUE, i60[1], i69[1])≥LOAD702(i60[1], i69[1])∧(UIncreasing(LOAD702(i60[1], i69[1])), ≥))
(15) (COND_LOAD425(TRUE, i60[1], 0)≥NonInfC∧COND_LOAD425(TRUE, i60[1], 0)≥LOAD702(i60[1], 0)∧(UIncreasing(LOAD702(i60[1], i69[1])), ≥))
(16) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_34] ≥ 0)
(17) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_34] ≥ 0)
(18) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_34] ≥ 0)
(19) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧0 = 0∧[(-1)bso_34] ≥ 0)
(20) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3] ⇒ LOAD702(i60[2], i99[2])≥NonInfC∧LOAD702(i60[2], i99[2])≥COND_LOAD702(>(i99[2], 0), i60[2], i99[2])∧(UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥))
(21) (>(i99[2], 0)=TRUE ⇒ LOAD702(i60[2], i99[2])≥NonInfC∧LOAD702(i60[2], i99[2])≥COND_LOAD702(>(i99[2], 0), i60[2], i99[2])∧(UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥))
(22) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [(2)bni_35]i60[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(23) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [(2)bni_35]i60[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(24) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [(2)bni_35]i60[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(25) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(2)bni_35] = 0∧[(-1)bni_35 + (-1)Bound*bni_35] ≥ 0∧0 = 0∧[(-1)bso_36] ≥ 0)
(26) (i99[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(2)bni_35] = 0∧[(-1)bni_35 + (-1)Bound*bni_35] ≥ 0∧0 = 0∧[(-1)bso_36] ≥ 0)
(27) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3]∧i60[3]=i60[2]1∧+(i99[3], -1)=i99[2]1 ⇒ COND_LOAD702(TRUE, i60[3], i99[3])≥NonInfC∧COND_LOAD702(TRUE, i60[3], i99[3])≥LOAD702(i60[3], +(i99[3], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(28) (>(i99[2], 0)=TRUE ⇒ COND_LOAD702(TRUE, i60[2], i99[2])≥NonInfC∧COND_LOAD702(TRUE, i60[2], i99[2])≥LOAD702(i60[2], +(i99[2], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(29) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]i60[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(30) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]i60[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(31) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]i60[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(32) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(2)bni_37] = 0∧[(-1)bni_37 + (-1)Bound*bni_37] ≥ 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(33) (i99[2] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(2)bni_37] = 0∧[(-1)bni_37 + (-1)Bound*bni_37] ≥ 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(34) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3]∧i60[3]=i60[4]∧+(i99[3], -1)=0 ⇒ COND_LOAD702(TRUE, i60[3], i99[3])≥NonInfC∧COND_LOAD702(TRUE, i60[3], i99[3])≥LOAD702(i60[3], +(i99[3], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(35) (>(i99[2], 0)=TRUE∧+(i99[2], -1)=0 ⇒ COND_LOAD702(TRUE, i60[2], i99[2])≥NonInfC∧COND_LOAD702(TRUE, i60[2], i99[2])≥LOAD702(i60[2], +(i99[2], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(36) (i99[2] + [-1] ≥ 0∧i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]i60[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(37) (i99[2] + [-1] ≥ 0∧i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]i60[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(38) (i99[2] + [-1] ≥ 0∧i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]i60[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(39) (i99[2] + [-1] ≥ 0∧i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(2)bni_37] = 0∧[(-1)bni_37 + (-1)Bound*bni_37] ≥ 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(40) (i99[2] ≥ 0∧i99[2] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(2)bni_37] = 0∧[(-1)bni_37 + (-1)Bound*bni_37] ≥ 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(41) (i60[4]=i60[0]∧0=i69[0] ⇒ LOAD702(i60[4], 0)≥NonInfC∧LOAD702(i60[4], 0)≥LOAD425(i60[4], 0)∧(UIncreasing(LOAD425(i60[4], 0)), ≥))
(42) (LOAD702(i60[4], 0)≥NonInfC∧LOAD702(i60[4], 0)≥LOAD425(i60[4], 0)∧(UIncreasing(LOAD425(i60[4], 0)), ≥))
(43) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_40] ≥ 0)
(44) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_40] ≥ 0)
(45) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_40] ≥ 0)
(46) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧0 = 0∧[(-1)bso_40] ≥ 0)
(47) (0=i69[6]∧i60[4]=i60[6] ⇒ LOAD702(i60[4], 0)≥NonInfC∧LOAD702(i60[4], 0)≥LOAD425(i60[4], 0)∧(UIncreasing(LOAD425(i60[4], 0)), ≥))
(48) (LOAD702(i60[4], 0)≥NonInfC∧LOAD702(i60[4], 0)≥LOAD425(i60[4], 0)∧(UIncreasing(LOAD425(i60[4], 0)), ≥))
(49) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_40] ≥ 0)
(50) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_40] ≥ 0)
(51) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_40] ≥ 0)
(52) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧0 = 0∧[(-1)bso_40] ≥ 0)
(53) (i69[5]=i69[0]∧0=i60[0] ⇒ LOAD719(0, i69[5])≥NonInfC∧LOAD719(0, i69[5])≥LOAD425(0, i69[5])∧(UIncreasing(LOAD425(0, i69[5])), ≥))
(54) (LOAD719(0, i69[5])≥NonInfC∧LOAD719(0, i69[5])≥LOAD425(0, i69[5])∧(UIncreasing(LOAD425(0, i69[5])), ≥))
(55) ((UIncreasing(LOAD425(0, i69[5])), ≥)∧[(-1)bso_42] ≥ 0)
(56) ((UIncreasing(LOAD425(0, i69[5])), ≥)∧[(-1)bso_42] ≥ 0)
(57) ((UIncreasing(LOAD425(0, i69[5])), ≥)∧[(-1)bso_42] ≥ 0)
(58) ((UIncreasing(LOAD425(0, i69[5])), ≥)∧0 = 0∧[(-1)bso_42] ≥ 0)
(59) (i69[5]=i69[6]∧0=i60[6] ⇒ LOAD719(0, i69[5])≥NonInfC∧LOAD719(0, i69[5])≥LOAD425(0, i69[5])∧(UIncreasing(LOAD425(0, i69[5])), ≥))
(60) (LOAD719(0, i69[5])≥NonInfC∧LOAD719(0, i69[5])≥LOAD425(0, i69[5])∧(UIncreasing(LOAD425(0, i69[5])), ≥))
(61) ((UIncreasing(LOAD425(0, i69[5])), ≥)∧[(-1)bso_42] ≥ 0)
(62) ((UIncreasing(LOAD425(0, i69[5])), ≥)∧[(-1)bso_42] ≥ 0)
(63) ((UIncreasing(LOAD425(0, i69[5])), ≥)∧[(-1)bso_42] ≥ 0)
(64) ((UIncreasing(LOAD425(0, i69[5])), ≥)∧0 = 0∧[(-1)bso_42] ≥ 0)
(65) (i60[6]=i60[7]∧i69[6]=i69[7]∧&&(>(i69[6], 0), >(i60[6], i69[6]))=TRUE ⇒ LOAD425(i60[6], i69[6])≥NonInfC∧LOAD425(i60[6], i69[6])≥COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])∧(UIncreasing(COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])), ≥))
(66) (>(i69[6], 0)=TRUE∧>(i60[6], i69[6])=TRUE ⇒ LOAD425(i60[6], i69[6])≥NonInfC∧LOAD425(i60[6], i69[6])≥COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])∧(UIncreasing(COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])), ≥))
(67) (i69[6] + [-1] ≥ 0∧i60[6] + [-1] + [-1]i69[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]i60[6] ≥ 0∧[-1 + (-1)bso_44] + i60[6] ≥ 0)
(68) (i69[6] + [-1] ≥ 0∧i60[6] + [-1] + [-1]i69[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]i60[6] ≥ 0∧[-1 + (-1)bso_44] + i60[6] ≥ 0)
(69) (i69[6] + [-1] ≥ 0∧i60[6] + [-1] + [-1]i69[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]i60[6] ≥ 0∧[-1 + (-1)bso_44] + i60[6] ≥ 0)
(70) (i69[6] ≥ 0∧i60[6] + [-2] + [-1]i69[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]i60[6] ≥ 0∧[-1 + (-1)bso_44] + i60[6] ≥ 0)
(71) (i69[6] ≥ 0∧i60[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])), ≥)∧[(3)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]i69[6] + [(2)bni_43]i60[6] ≥ 0∧[1 + (-1)bso_44] + i69[6] + i60[6] ≥ 0)
(72) (i69[7]=i69[5]∧i60[7]=0 ⇒ COND_LOAD4251(TRUE, i60[7], i69[7])≥NonInfC∧COND_LOAD4251(TRUE, i60[7], i69[7])≥LOAD719(i60[7], i69[7])∧(UIncreasing(LOAD719(i60[7], i69[7])), ≥))
(73) (COND_LOAD4251(TRUE, 0, i69[7])≥NonInfC∧COND_LOAD4251(TRUE, 0, i69[7])≥LOAD719(0, i69[7])∧(UIncreasing(LOAD719(i60[7], i69[7])), ≥))
(74) ((UIncreasing(LOAD719(i60[7], i69[7])), ≥)∧[(-1)bso_46] ≥ 0)
(75) ((UIncreasing(LOAD719(i60[7], i69[7])), ≥)∧[(-1)bso_46] ≥ 0)
(76) ((UIncreasing(LOAD719(i60[7], i69[7])), ≥)∧[(-1)bso_46] ≥ 0)
(77) ((UIncreasing(LOAD719(i60[7], i69[7])), ≥)∧0 = 0∧[(-1)bso_46] ≥ 0)
(78) (i60[7]=i101[8]∧i69[7]=i69[8] ⇒ COND_LOAD4251(TRUE, i60[7], i69[7])≥NonInfC∧COND_LOAD4251(TRUE, i60[7], i69[7])≥LOAD719(i60[7], i69[7])∧(UIncreasing(LOAD719(i60[7], i69[7])), ≥))
(79) (COND_LOAD4251(TRUE, i60[7], i69[7])≥NonInfC∧COND_LOAD4251(TRUE, i60[7], i69[7])≥LOAD719(i60[7], i69[7])∧(UIncreasing(LOAD719(i60[7], i69[7])), ≥))
(80) ((UIncreasing(LOAD719(i60[7], i69[7])), ≥)∧[(-1)bso_46] ≥ 0)
(81) ((UIncreasing(LOAD719(i60[7], i69[7])), ≥)∧[(-1)bso_46] ≥ 0)
(82) ((UIncreasing(LOAD719(i60[7], i69[7])), ≥)∧[(-1)bso_46] ≥ 0)
(83) ((UIncreasing(LOAD719(i60[7], i69[7])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_46] ≥ 0)
(84) (>(i101[8], 0)=TRUE∧i101[8]=i101[9]∧i69[8]=i69[9] ⇒ LOAD719(i101[8], i69[8])≥NonInfC∧LOAD719(i101[8], i69[8])≥COND_LOAD719(>(i101[8], 0), i101[8], i69[8])∧(UIncreasing(COND_LOAD719(>(i101[8], 0), i101[8], i69[8])), ≥))
(85) (>(i101[8], 0)=TRUE ⇒ LOAD719(i101[8], i69[8])≥NonInfC∧LOAD719(i101[8], i69[8])≥COND_LOAD719(>(i101[8], 0), i101[8], i69[8])∧(UIncreasing(COND_LOAD719(>(i101[8], 0), i101[8], i69[8])), ≥))
(86) (i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD719(>(i101[8], 0), i101[8], i69[8])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] + [bni_47]i101[8] ≥ 0∧[(-1)bso_48] ≥ 0)
(87) (i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD719(>(i101[8], 0), i101[8], i69[8])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] + [bni_47]i101[8] ≥ 0∧[(-1)bso_48] ≥ 0)
(88) (i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD719(>(i101[8], 0), i101[8], i69[8])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] + [bni_47]i101[8] ≥ 0∧[(-1)bso_48] ≥ 0)
(89) (i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD719(>(i101[8], 0), i101[8], i69[8])), ≥)∧0 = 0∧[(-1)bni_47 + (-1)Bound*bni_47] + [bni_47]i101[8] ≥ 0∧0 = 0∧[(-1)bso_48] ≥ 0)
(90) (i101[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD719(>(i101[8], 0), i101[8], i69[8])), ≥)∧0 = 0∧[(-1)Bound*bni_47] + [bni_47]i101[8] ≥ 0∧0 = 0∧[(-1)bso_48] ≥ 0)
(91) (>(i101[8], 0)=TRUE∧i101[8]=i101[9]∧i69[8]=i69[9]∧i69[9]=i69[5]∧+(i101[9], -1)=0 ⇒ COND_LOAD719(TRUE, i101[9], i69[9])≥NonInfC∧COND_LOAD719(TRUE, i101[9], i69[9])≥LOAD719(+(i101[9], -1), i69[9])∧(UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥))
(92) (>(i101[8], 0)=TRUE∧+(i101[8], -1)=0 ⇒ COND_LOAD719(TRUE, i101[8], i69[8])≥NonInfC∧COND_LOAD719(TRUE, i101[8], i69[8])≥LOAD719(+(i101[8], -1), i69[8])∧(UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥))
(93) (i101[8] + [-1] ≥ 0∧i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧[1 + (-1)bso_50] ≥ 0)
(94) (i101[8] + [-1] ≥ 0∧i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧[1 + (-1)bso_50] ≥ 0)
(95) (i101[8] + [-1] ≥ 0∧i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧[1 + (-1)bso_50] ≥ 0)
(96) (i101[8] + [-1] ≥ 0∧i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧0 = 0∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧0 = 0∧[1 + (-1)bso_50] ≥ 0)
(97) (i101[8] ≥ 0∧i101[8] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧0 = 0∧[(-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧0 = 0∧[1 + (-1)bso_50] ≥ 0)
(98) (>(i101[8], 0)=TRUE∧i101[8]=i101[9]∧i69[8]=i69[9]∧+(i101[9], -1)=i101[8]1∧i69[9]=i69[8]1 ⇒ COND_LOAD719(TRUE, i101[9], i69[9])≥NonInfC∧COND_LOAD719(TRUE, i101[9], i69[9])≥LOAD719(+(i101[9], -1), i69[9])∧(UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥))
(99) (>(i101[8], 0)=TRUE ⇒ COND_LOAD719(TRUE, i101[8], i69[8])≥NonInfC∧COND_LOAD719(TRUE, i101[8], i69[8])≥LOAD719(+(i101[8], -1), i69[8])∧(UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥))
(100) (i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧[1 + (-1)bso_50] ≥ 0)
(101) (i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧[1 + (-1)bso_50] ≥ 0)
(102) (i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧[1 + (-1)bso_50] ≥ 0)
(103) (i101[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧0 = 0∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧0 = 0∧[1 + (-1)bso_50] ≥ 0)
(104) (i101[8] ≥ 0 ⇒ (UIncreasing(LOAD719(+(i101[9], -1), i69[9])), ≥)∧0 = 0∧[(-1)Bound*bni_49] + [bni_49]i101[8] ≥ 0∧0 = 0∧[1 + (-1)bso_50] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD425(x1, x2)) = [-1] + [2]x1
POL(COND_LOAD425(x1, x2, x3)) = [-1] + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(LOAD702(x1, x2)) = [-1] + [2]x1
POL(COND_LOAD702(x1, x2, x3)) = [-1] + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(LOAD719(x1, x2)) = [-1] + x1
POL(COND_LOAD4251(x1, x2, x3)) = [-1] + x2 + [-1]x1
POL(COND_LOAD719(x1, x2, x3)) = [-1] + x2
LOAD425(i60[6], i69[6]) → COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])
COND_LOAD719(TRUE, i101[9], i69[9]) → LOAD719(+(i101[9], -1), i69[9])
LOAD425(i60[0], i69[0]) → COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])
LOAD425(i60[6], i69[6]) → COND_LOAD4251(&&(>(i69[6], 0), >(i60[6], i69[6])), i60[6], i69[6])
LOAD719(i101[8], i69[8]) → COND_LOAD719(>(i101[8], 0), i101[8], i69[8])
COND_LOAD719(TRUE, i101[9], i69[9]) → LOAD719(+(i101[9], -1), i69[9])
LOAD425(i60[0], i69[0]) → COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])
COND_LOAD425(TRUE, i60[1], i69[1]) → LOAD702(i60[1], i69[1])
LOAD702(i60[2], i99[2]) → COND_LOAD702(>(i99[2], 0), i60[2], i99[2])
COND_LOAD702(TRUE, i60[3], i99[3]) → LOAD702(i60[3], +(i99[3], -1))
LOAD702(i60[4], 0) → LOAD425(i60[4], 0)
LOAD719(0, i69[5]) → LOAD425(0, i69[5])
COND_LOAD4251(TRUE, i60[7], i69[7]) → LOAD719(i60[7], i69[7])
LOAD719(i101[8], i69[8]) → COND_LOAD719(>(i101[8], 0), i101[8], i69[8])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(4) -> (0), if ((i60[4] →* i60[0])∧(0 →* i69[0]))
(5) -> (0), if ((i69[5] →* i69[0])∧(0 →* i60[0]))
(0) -> (1), if ((i69[0] →* i69[1])∧(i60[0] →* i60[1])∧(i60[0] > 0 && i60[0] <= i69[0] →* TRUE))
(1) -> (2), if ((i69[1] →* i99[2])∧(i60[1] →* i60[2]))
(3) -> (2), if ((i60[3] →* i60[2])∧(i99[3] + -1 →* i99[2]))
(2) -> (3), if ((i99[2] →* i99[3])∧(i99[2] > 0 →* TRUE)∧(i60[2] →* i60[3]))
(1) -> (4), if ((i60[1] →* i60[4])∧(i69[1] →* 0))
(3) -> (4), if ((i60[3] →* i60[4])∧(i99[3] + -1 →* 0))
(7) -> (5), if ((i69[7] →* i69[5])∧(i60[7] →* 0))
(7) -> (8), if ((i60[7] →* i101[8])∧(i69[7] →* i69[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (0), if ((i60[4] →* i60[0])∧(0 →* i69[0]))
(0) -> (1), if ((i69[0] →* i69[1])∧(i60[0] →* i60[1])∧(i60[0] > 0 && i60[0] <= i69[0] →* TRUE))
(1) -> (2), if ((i69[1] →* i99[2])∧(i60[1] →* i60[2]))
(3) -> (2), if ((i60[3] →* i60[2])∧(i99[3] + -1 →* i99[2]))
(2) -> (3), if ((i99[2] →* i99[3])∧(i99[2] > 0 →* TRUE)∧(i60[2] →* i60[3]))
(1) -> (4), if ((i60[1] →* i60[4])∧(i69[1] →* 0))
(3) -> (4), if ((i60[3] →* i60[4])∧(i99[3] + -1 →* 0))
(1) (i60[4]=i60[0]∧0=i69[0] ⇒ LOAD702(i60[4], 0)≥NonInfC∧LOAD702(i60[4], 0)≥LOAD425(i60[4], 0)∧(UIncreasing(LOAD425(i60[4], 0)), ≥))
(2) (LOAD702(i60[4], 0)≥NonInfC∧LOAD702(i60[4], 0)≥LOAD425(i60[4], 0)∧(UIncreasing(LOAD425(i60[4], 0)), ≥))
(3) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_21] ≥ 0)
(4) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_21] ≥ 0)
(5) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧[(-1)bso_21] ≥ 0)
(6) ((UIncreasing(LOAD425(i60[4], 0)), ≥)∧0 = 0∧[(-1)bso_21] ≥ 0)
(7) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3]∧i60[3]=i60[2]1∧+(i99[3], -1)=i99[2]1 ⇒ COND_LOAD702(TRUE, i60[3], i99[3])≥NonInfC∧COND_LOAD702(TRUE, i60[3], i99[3])≥LOAD702(i60[3], +(i99[3], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(8) (>(i99[2], 0)=TRUE ⇒ COND_LOAD702(TRUE, i60[2], i99[2])≥NonInfC∧COND_LOAD702(TRUE, i60[2], i99[2])≥LOAD702(i60[2], +(i99[2], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(9) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i60[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(10) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i60[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(11) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i60[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(12) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(13) (i99[2] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(14) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3]∧i60[3]=i60[4]∧+(i99[3], -1)=0 ⇒ COND_LOAD702(TRUE, i60[3], i99[3])≥NonInfC∧COND_LOAD702(TRUE, i60[3], i99[3])≥LOAD702(i60[3], +(i99[3], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(15) (>(i99[2], 0)=TRUE∧+(i99[2], -1)=0 ⇒ COND_LOAD702(TRUE, i60[2], i99[2])≥NonInfC∧COND_LOAD702(TRUE, i60[2], i99[2])≥LOAD702(i60[2], +(i99[2], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(16) (i99[2] + [-1] ≥ 0∧i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i60[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(17) (i99[2] + [-1] ≥ 0∧i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i60[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(18) (i99[2] + [-1] ≥ 0∧i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i60[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(19) (i99[2] + [-1] ≥ 0∧i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(20) (i99[2] ≥ 0∧i99[2] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(21) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3] ⇒ LOAD702(i60[2], i99[2])≥NonInfC∧LOAD702(i60[2], i99[2])≥COND_LOAD702(>(i99[2], 0), i60[2], i99[2])∧(UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥))
(22) (>(i99[2], 0)=TRUE ⇒ LOAD702(i60[2], i99[2])≥NonInfC∧LOAD702(i60[2], i99[2])≥COND_LOAD702(>(i99[2], 0), i60[2], i99[2])∧(UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥))
(23) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i60[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(24) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i60[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(25) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i60[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(26) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_24] = 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(27) (i99[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_24] = 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(28) (i69[1]=i99[2]∧i60[1]=i60[2] ⇒ COND_LOAD425(TRUE, i60[1], i69[1])≥NonInfC∧COND_LOAD425(TRUE, i60[1], i69[1])≥LOAD702(i60[1], i69[1])∧(UIncreasing(LOAD702(i60[1], i69[1])), ≥))
(29) (COND_LOAD425(TRUE, i60[1], i69[1])≥NonInfC∧COND_LOAD425(TRUE, i60[1], i69[1])≥LOAD702(i60[1], i69[1])∧(UIncreasing(LOAD702(i60[1], i69[1])), ≥))
(30) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_27] ≥ 0)
(31) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_27] ≥ 0)
(32) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_27] ≥ 0)
(33) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_27] ≥ 0)
(34) (i60[1]=i60[4]∧i69[1]=0 ⇒ COND_LOAD425(TRUE, i60[1], i69[1])≥NonInfC∧COND_LOAD425(TRUE, i60[1], i69[1])≥LOAD702(i60[1], i69[1])∧(UIncreasing(LOAD702(i60[1], i69[1])), ≥))
(35) (COND_LOAD425(TRUE, i60[1], 0)≥NonInfC∧COND_LOAD425(TRUE, i60[1], 0)≥LOAD702(i60[1], 0)∧(UIncreasing(LOAD702(i60[1], i69[1])), ≥))
(36) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_27] ≥ 0)
(37) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_27] ≥ 0)
(38) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧[(-1)bso_27] ≥ 0)
(39) ((UIncreasing(LOAD702(i60[1], i69[1])), ≥)∧0 = 0∧[(-1)bso_27] ≥ 0)
(40) (i69[0]=i69[1]∧i60[0]=i60[1]∧&&(>(i60[0], 0), <=(i60[0], i69[0]))=TRUE ⇒ LOAD425(i60[0], i69[0])≥NonInfC∧LOAD425(i60[0], i69[0])≥COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])∧(UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥))
(41) (>(i60[0], 0)=TRUE∧<=(i60[0], i69[0])=TRUE ⇒ LOAD425(i60[0], i69[0])≥NonInfC∧LOAD425(i60[0], i69[0])≥COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])∧(UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥))
(42) (i60[0] + [-1] ≥ 0∧i69[0] + [-1]i60[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(2)bni_28]i69[0] + [(-1)bni_28]i60[0] ≥ 0∧[(-1)bso_29] + [2]i69[0] ≥ 0)
(43) (i60[0] + [-1] ≥ 0∧i69[0] + [-1]i60[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(2)bni_28]i69[0] + [(-1)bni_28]i60[0] ≥ 0∧[(-1)bso_29] + [2]i69[0] ≥ 0)
(44) (i60[0] + [-1] ≥ 0∧i69[0] + [-1]i60[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(2)bni_28]i69[0] + [(-1)bni_28]i60[0] ≥ 0∧[(-1)bso_29] + [2]i69[0] ≥ 0)
(45) (i60[0] ≥ 0∧i69[0] + [-1] + [-1]i60[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[(-2)bni_28 + (-1)Bound*bni_28] + [(2)bni_28]i69[0] + [(-1)bni_28]i60[0] ≥ 0∧[(-1)bso_29] + [2]i69[0] ≥ 0)
(46) (i60[0] ≥ 0∧i69[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])), ≥)∧[(-1)Bound*bni_28] + [bni_28]i60[0] + [(2)bni_28]i69[0] ≥ 0∧[2 + (-1)bso_29] + [2]i60[0] + [2]i69[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(LOAD702(x1, x2)) = [-1] + [-1]x1
POL(0) = 0
POL(LOAD425(x1, x2)) = [-1] + [2]x2 + [-1]x1
POL(COND_LOAD702(x1, x2, x3)) = [-1] + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(COND_LOAD425(x1, x2, x3)) = [-1] + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(<=(x1, x2)) = [-1]
LOAD425(i60[0], i69[0]) → COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])
LOAD425(i60[0], i69[0]) → COND_LOAD425(&&(>(i60[0], 0), <=(i60[0], i69[0])), i60[0], i69[0])
LOAD702(i60[4], 0) → LOAD425(i60[4], 0)
COND_LOAD702(TRUE, i60[3], i99[3]) → LOAD702(i60[3], +(i99[3], -1))
LOAD702(i60[2], i99[2]) → COND_LOAD702(>(i99[2], 0), i60[2], i99[2])
COND_LOAD425(TRUE, i60[1], i69[1]) → LOAD702(i60[1], i69[1])
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((i69[1] →* i99[2])∧(i60[1] →* i60[2]))
(3) -> (2), if ((i60[3] →* i60[2])∧(i99[3] + -1 →* i99[2]))
(2) -> (3), if ((i99[2] →* i99[3])∧(i99[2] > 0 →* TRUE)∧(i60[2] →* i60[3]))
(1) -> (4), if ((i60[1] →* i60[4])∧(i69[1] →* 0))
(3) -> (4), if ((i60[3] →* i60[4])∧(i99[3] + -1 →* 0))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if ((i60[3] →* i60[2])∧(i99[3] + -1 →* i99[2]))
(2) -> (3), if ((i99[2] →* i99[3])∧(i99[2] > 0 →* TRUE)∧(i60[2] →* i60[3]))
(1) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3] ⇒ LOAD702(i60[2], i99[2])≥NonInfC∧LOAD702(i60[2], i99[2])≥COND_LOAD702(>(i99[2], 0), i60[2], i99[2])∧(UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥))
(2) (>(i99[2], 0)=TRUE ⇒ LOAD702(i60[2], i99[2])≥NonInfC∧LOAD702(i60[2], i99[2])≥COND_LOAD702(>(i99[2], 0), i60[2], i99[2])∧(UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥))
(3) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(7) (i99[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(8) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3]∧i60[3]=i60[2]1∧+(i99[3], -1)=i99[2]1 ⇒ COND_LOAD702(TRUE, i60[3], i99[3])≥NonInfC∧COND_LOAD702(TRUE, i60[3], i99[3])≥LOAD702(i60[3], +(i99[3], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(9) (>(i99[2], 0)=TRUE ⇒ COND_LOAD702(TRUE, i60[2], i99[2])≥NonInfC∧COND_LOAD702(TRUE, i60[2], i99[2])≥LOAD702(i60[2], +(i99[2], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(10) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(11) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(12) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(13) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(14) (i99[2] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD702(x1, x2)) = [-1] + x2
POL(COND_LOAD702(x1, x2, x3)) = [-1] + x3
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_LOAD702(TRUE, i60[3], i99[3]) → LOAD702(i60[3], +(i99[3], -1))
LOAD702(i60[2], i99[2]) → COND_LOAD702(>(i99[2], 0), i60[2], i99[2])
COND_LOAD702(TRUE, i60[3], i99[3]) → LOAD702(i60[3], +(i99[3], -1))
LOAD702(i60[2], i99[2]) → COND_LOAD702(>(i99[2], 0), i60[2], i99[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((i69[1] →* i99[2])∧(i60[1] →* i60[2]))
(3) -> (2), if ((i60[3] →* i60[2])∧(i99[3] + -1 →* i99[2]))
(2) -> (3), if ((i99[2] →* i99[3])∧(i99[2] > 0 →* TRUE)∧(i60[2] →* i60[3]))
(1) -> (4), if ((i60[1] →* i60[4])∧(i69[1] →* 0))
(3) -> (4), if ((i60[3] →* i60[4])∧(i99[3] + -1 →* 0))
(7) -> (5), if ((i69[7] →* i69[5])∧(i60[7] →* 0))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if ((i60[3] →* i60[2])∧(i99[3] + -1 →* i99[2]))
(2) -> (3), if ((i99[2] →* i99[3])∧(i99[2] > 0 →* TRUE)∧(i60[2] →* i60[3]))
(1) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3]∧i60[3]=i60[2]1∧+(i99[3], -1)=i99[2]1 ⇒ COND_LOAD702(TRUE, i60[3], i99[3])≥NonInfC∧COND_LOAD702(TRUE, i60[3], i99[3])≥LOAD702(i60[3], +(i99[3], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(2) (>(i99[2], 0)=TRUE ⇒ COND_LOAD702(TRUE, i60[2], i99[2])≥NonInfC∧COND_LOAD702(TRUE, i60[2], i99[2])≥LOAD702(i60[2], +(i99[2], -1))∧(UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥))
(3) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (i99[2] ≥ 0 ⇒ (UIncreasing(LOAD702(i60[3], +(i99[3], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]i99[2] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (i99[2]=i99[3]∧>(i99[2], 0)=TRUE∧i60[2]=i60[3] ⇒ LOAD702(i60[2], i99[2])≥NonInfC∧LOAD702(i60[2], i99[2])≥COND_LOAD702(>(i99[2], 0), i60[2], i99[2])∧(UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥))
(9) (>(i99[2], 0)=TRUE ⇒ LOAD702(i60[2], i99[2])≥NonInfC∧LOAD702(i60[2], i99[2])≥COND_LOAD702(>(i99[2], 0), i60[2], i99[2])∧(UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥))
(10) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (i99[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (i99[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD702(>(i99[2], 0), i60[2], i99[2])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i99[2] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD702(x1, x2, x3)) = [-1] + x3
POL(LOAD702(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_LOAD702(TRUE, i60[3], i99[3]) → LOAD702(i60[3], +(i99[3], -1))
COND_LOAD702(TRUE, i60[3], i99[3]) → LOAD702(i60[3], +(i99[3], -1))
LOAD702(i60[2], i99[2]) → COND_LOAD702(>(i99[2], 0), i60[2], i99[2])
LOAD702(i60[2], i99[2]) → COND_LOAD702(>(i99[2], 0), i60[2], i99[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |